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LETTER TO THE EDITOR 

The heat kernel for deformed spheres 
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152, Japan 
3 Department of Theoretical Physics, St Petersburg University, 198904 St-Petemburg, Russia 

Received 31 October 1994 

Abstract We derive. the asymptotic expansion of the heat kernel for a Laplace operaor acting 
on deformed spheres. We calculate the coefficients of the heat kernel expansion on WO- and 
three-dimensional deformed spheres as functions of deformation parameters. We find that under 
some deformation the conformal anomaly far free swlar fields on R4 x 3' md Rb x 3' is 
cancelled 

The asymptotic expansion of the  heat kernel, corresponding to the elliptic second-order 
differential operator acting on an arbitrary manifold M. has been investigated in connection 
with index theorems [I] and some applications in field theory [Z, 31. The kernel K ( x ,  y, t )  
satisfies a heat equation for some second-order operator H = - D Z + X  defined on a smooth 
N-dimensional Riemannian manifold (X is . ,  scalar function) 

(&+H)K(x ,y , t )=O 
. ,  .. , .  with the boundary condition 

K ( x ,  Y. 0) = S ( X ,  Y )  

The asymptotic expansion of K ( x ,  y, t )  has been derived for various'models [47]  in a 
general form [6] and in a numerical form for some homogeneous spaces [7]. Under t + 0, 
the heat kernel has the following expansion: 

where A is the invariant Van Vleck-Morette determinant [8] and Zu(x,.y) is the square 
of the geodesic~distance between x and y. In terms of K ( x ,  y. t).  one can write a simple 
integra representation for the one-loop effective action. If one takes regularization with the 
short-distance cut-off L [9]. the regularized oneloop effective action W(') can be defined 
as 
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Here K ( t )  = t r jdNxg1/2K(x,x,  t ) .  with the asymptotic expansion 

m m 

n=O "=O 
K ( t )  = CA,t"-N'2  = ~ ~ / d N x g i / 2 a , ( n . x ) .  

The divergent terms in W(') are proportional to the first coefficients a,(x,n). For even- 
dimensional spaces, the most important coefficient is UN,&, x) .  since this single coefficient 
for a given theory determines various anomalies [IO]. 

In this letter, we explicitly calculate the coefficients aa(x,x) for two- and three- 
dimensional spaces obtained from the metric deformation of two- and three-dimensional 
spheres, respectively. We obtain the coefficients a, as functions of the deformation 
parameters and show that under some deformation the conformal anomaly is cancelled 
for free scalar fields defined on 3' x R4 and s2 x R6. 

Let us begin with the scalar Laplacian eigenvalues on deformed spheres. The metric on 
the deformed sphere Sd+' can be expressed in the form 

ds2 = dxi + sin' xo dQ2 

where dQ' is the mehic on the (deformed) 3. Any scalar function can be represented as 
a sum of eigenfunctions Y ( [ ) ( x ~ )  of the Laplace operator on 3' 

, ,  

,$(XO.Xi) = ~ f i f ) ~ x o ) u c l ) ( x i ) .  (1) 
(1) 

Substituting decomposition (1) in the eigenvalue equation 

A$ = A$ 

we obtain the following ordinary differential equation 

--a([) is the eigenvalue of the Laplace operator on sd corresponding to Y(Q We shall drop 
the subscripts ( I )  for a while. Let us make the substitution 

f = hsinb(xo) b = 4 1 d + (1 d)Z+4n ( -  J , -  ) 
and change the independent variable 

z = f(cosxo + 1). 

Equation (2) then takes the form 

z ( z -  I )h"+(I+c)(z-f)h '+eh=O 

e = b ( b + d ) + h  c = Z b + d .  (3) 

Pries denote differentiation with respect to z. According to the general prescription [Ill, 
let us express h as the power series 
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Substitution of (4) into (3) gives a recurrent condition on the coefficients u k :  

The denominator of (5) is positive for all k.  The eigenfunctions ht can be found by imposing 
the condition that the numerator of (5) be equal to zero. We obtain the eigenvalues 

A ( f ) L = - k Z - ( l + q ) k - 4 ( 1 - d + q t 2 ~ ( r ) )  

q ,= ,/(d - + 4a(i) (6) 

where we have restored the dependence on the index (1). The eigenvalues ql) can be 
defined using the same formula (6) with d + d - 1. Repeating these steps, we can obtain 
the spect" of the scalar Laplace operator on id+' in terms of d f 1 non-negative integers 
and d + 1 scale parameters. 

Ford = 3, equation (6) is obtained in [12] by the same methods. 
In the case of the unit round d-sphere id with a(l) = l (1  t d - l), we obtain from (6) 

A(1)k = -(k + l ) ( k  + 1 + d )  = -n(n + d) n = k t E .  

Thus, equation (6) reproduces the correct eigenvalues of the scalar Laplace operator on the 
unit round Sd+'. One can also verify that the degeneracies have the correct values. 

With the deformation of a two-dimensional sphere, we consider rescaling 1' + pl', 
(p  > 0). where 1' are the eigenvalues of a Laplace operator on the unit sphere S'. The 
eigenvalues (6) for 3' can be written as 

Ai,x = - ( k + p l +  f)' + t .  .. 0) 
The heat kernel for the eigenvalues (7) is defined as 

To derive the asymptotic expansion for the first term in (8). we rewrite the sum over k by 
using the Mellin transform ~. 

m 

f(s, i) 1 &ns-le-x*f = 1 'I- ( ~ / 2 ) t - = / ~ .  

Performing the inverse transform 

and summing over k, we obtain 
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Here the contour C covers the poles of r(s‘/Z) at points s‘ = -2m as well as the poles of 
g(s’) = ErI [(s’, p l +  4) and 

R ( f )  = e‘/‘& ds‘l?(s’/2)r”’pg(s‘) 

where the contour D consists of the semicircumference at infinity on the left. Formula (9) 
is understood to be exact, but it is difficult to compute R(t)  explicitly. However, one can 
show that R(t)  vanishes exponentially as t --t 0. Thus, for small f, one can discard R(t) 
relative to the power series, leaving the asymptotic expansion for K ( t ) .  (The calculations 
of R(t) for some series can be found~in [13].) Using the Hermite formula [ l l ]  

for [(s’, p l + 4 )  in (9), after summing over E and integrating overs’, we obtain the following 
heat kernel expansion: 

x t ( - 2 p  - 2n - 1) ( 2 p  +2n + 2 # 0) 

and the coefficients cp are determined ftom 

The asymptotic expansion for Kz in (8) can be derived by using the same method. After a 
little calculation (discarding the exponentially small contribution), we find 

Substituting (IO) and (11) into (8) and performing a numerical computation, we obtain the 
following values for some u,(p) (a = 1): 

n ~ ~ 0 . 2  p=O.6 p = l  p=1.8 

I 0.1733 0.2267 0.3333 0.7067 
2 0.0077 0.~7263 0.0667 0.2439 
3 -0.0016 0.0024 0.0127 0.0902 
4 ’ -0.0008 0.0003 0.0032, 0.0590 
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For p = 1, we have from (12). in a numerical form, the famous asymptotic expansion for 
unit round Sz ~ . 

1 
K ( t )  = t + 0.3333 + 0.0667t + 0.0127t2 + 0.0032t3 + . . -. 

. .  ... 

The next space we would like to consider is a three-sphere with another homogeneous 
deformation which can be represented as SU(2) x U(l)/U(l) (the Taub space). The 
eigenvalues of the Laplace operator can be written as 1141 

~ , , j  = nz - I + w(2j - n  + 1)' (13) 

where'o is the deformation parameter. The range of'w is - l ' <  w 4 00 and &= 0 
corresponds to round S3. Then the heat kernel takes the form 

, .  

First we rewrite the sum over j using the identity 

Now it has a form similar to (8) and can be evaluated by means of the Mellin transform. 
A straightforward calculation gives 

Here we have used the representation 

where B, are Bernoulli numbers. After similar manipulations with the sum over n in (15), 
we obtain 

m 3(-l)k(2k)! ~ , y  k- [ ( r+*) /21  r(3/2 + p)tk--~--3/2 

k=O r=O 
K ( O  =.'E 4k! c,  c p=o (2k - 2p - r)!(2p + I)! 

- n l / Z  3 + 4 w  32wz+40o+15 
+ 30(1 + o ) ~  - 

4(1 +w) 'P  

+...) 3690~ + 280' + 140w + 35 
210(1+ 4 3  

+ 
With w = 0, the expansion for round S3 is reproduced. 

As is known, the divergences in the one-loop effective action for even-dimensional 
spaces lead to scale symmehy breaking and give rise to a non-vanishing conformal anomaly. 
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The conformal anomaly has a geometic structure and is expressed by means of aNj2. In our 
case, a. depend on the deformation parameters and can be equal to zero with the appropriate 
parameti? values. 

Let us consider the one-loop effective action for scalar fields on Rm x jz where R’” 
is Euclidean m-dimensional space. The conformal anomaly arises when we take the 
expectation value of the momentum-energy tensor TE with the metric as a background 
classical field 

where Z[g] is the generating functional of the theory. Zeta-function regularization gives 
, .  

From (lo), (1 1) and (8), one can compute that the anomaly (17) for scalar fields on R4 x i2 
and R6 x 5’ is removed with the values p = 0.41 and p = 0.51, respectively. The Casimir 
energy is finite for these spaces and can be computed explicitly. (This problem is now under 
consideration.) For scalar fields on the four-dimensional space R’ x SU(2) x U ( l ) / U ( l ) ,  
the anomaly 

1 32w2 + 400 + 15 
(TE) = - 

( 4 ~ ) ~  30( 1 + o ) ~  

cannot be removed with any value of w. 
It should be noted that a different type of deformed sphere has been considered 

previously in multidimensional models 1151. However, only small one-parameter 
deformations have been used for the calculation of the one-loop potential. In our case, 
the deformation removing the conformal anomaly cannot be considered small. 

This work was partially supported by the Russian Foundation for Fundamental Studies, grant 
93-02-14378. One of us (DV) is grateful to Ignati Grigentch for discussions on Laplace 
operator on elliptic spaces. 

Nole added. The manifolds with singular points were also studied in the contexi of orbifold factors of spheres and 
flal conical spaces. The corresponding references can be found in [16,171. One of us @V) is grateful to Guido 
Cognola for pointing out [17]. 
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